首页> 外文OA文献 >Non-equilibrium processes: driven lattice gases, interface dynamics, and quenched disorder effects on density profiles and currents
【2h】

Non-equilibrium processes: driven lattice gases, interface dynamics, and quenched disorder effects on density profiles and currents

机译:非平衡过程:驱动晶格气体,界面动力学和   淬火障碍对密度分布和电流的影响

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Properties of the one-dimensional totally asymmetric simple exclusion process(TASEP), and their connection with the dynamical scaling of moving interfacesdescribed by a Kardar-Parisi-Zhang (KPZ) equation are investigated. Withperiodic boundary conditions, scaling of interface widths (the latter definedvia a discrete occupation-number-to-height mapping), gives the exponents$\alpha=0.500(5)$, $z=1.52(3)$, $\beta=0.33(1)$. With open boundaries, resultsare as follows: (i) in the maximal-current phase, the exponents are the same asfor the periodic case, and in agreement with recent Bethe ansatz results; (ii)in the low-density phase, curve collapse can be found to a rather good extent,with $\alpha=0.497(3)$, $z=1.20(5)$, $\beta=0.41(2)$, which is apparently atvariance with the Bethe ansatz prediction $z=0$; (iii) on the coexistence linebetween low- and high- density phases, $\alpha=0.99(1)$, $z=2.10(5)$,$\beta=0.47(2)$, in relatively good agreement with the Bethe ansatz prediction$z=2$. From a mean-field continuum formulation, a characteristic relaxationtime, related to kinematic-wave propagation and having an effective exponent$z^\prime=1$, is shown to be the limiting slow process for the low densityphase, which accounts for the above-mentioned discrepancy with Bethe ansatzresults. For TASEP with quenched bond disorder, interface width scaling gives$\alpha=1.05(5)$, $z=1.7(1)$, $\beta=0.62(7)$. From a direct analytic approachto steady-state properties of TASEP with quenched disorder, closed-formexpressions for the piecewise shape of averaged density profiles are given, aswell as rather restrictive bounds on currents. All these are substantiated innumerical simulations.
机译:研究了一维完全非对称简单排除过程(TASEP)的性质,以及它们与由Kardar-Parisi-Zhang(KPZ)方程描述的运动界面的动态缩放的关系。在周期性边界条件下,界面宽度的缩放(后者通过离散的职业数到高度映射定义)给出指数$ \ alpha = 0.500(5)$,$ z = 1.52(3)$,$ \ beta = 0.33(1)$。在开放边界的情况下,结果如下:(i)在最大电流阶段,指数与周期性情况相同,并且与最近的Bethe ansatz结果一致; (ii)在低密度阶段,可以找到相当程度的曲线塌陷,其中$ \ alpha = 0.497(3)$,$ z = 1.20(5)$,$ \ beta = 0.41(2)$ ,显然与Bethe ansatz预测$ z = 0 $保持不变; (iii)在低密度相和高密度相之间的共存线上,$ \ alpha = 0.99(1)$,$ z = 2.10(5)$,$ beta = 0.47(2)$,与Bethe ansatz预测$ z = 2 $。根据平均场连续谱公式,与运动波传播相关并具有有效指数$ z ^ \ prime = 1 $的特征弛豫时间被证明是低密度相的极限慢过程,这是上述原因的原因。与Bethe ansatzresults的差异。对于具有猝灭键紊乱的TASEP,界面宽度缩放给出$ \ alpha = 1.05(5)$,$ z = 1.7(1)$,$ \ beta = 0.62(7)$。从直接分析方法到具有猝灭紊乱的TASEP的稳态性质,给出了平均密度分布的分段形状的闭式表达式,以及电流的限制性边界。所有这些都是经过证实的数值模拟。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号